
Cloudflare WAF Scanner

Team Information – sdmay21-16
Client Faculty Advisors

Cylosoft - Andrew Dakin Dr. Berk Gulmeszoglu

Dr. Yong Guan

Team Members

Ryan Burgett rdb@iastate.edu SE

Ben Feddersen brfedd@iastate.edu SE

Jordan Heim jcheim@iastate.edu CYBSC

Pressiian Iskrenov presiian@iastate.edu SE

Giovanni Mejia gsmejia@iastate.edu CPRE

Eric Reuss ewreuss@iastate.edu SE

Design Approach
Software Architecture Sketch

Design Requirements
Functional Requirements

-Web server and console application will generate log

files and web requests.

-Database will store log files.

-Azure webservice will process log files.

-Database scanner will monitor the log files and

update usage rules to deny access to suspicious

users.

-Web Application will provide a user-friendly way to

interface with log data.

Non-Functional Requirements

-Azure web service will be always active.

-Database and console application will not be limited

by the quantity of logs processed.

-Security checkpoints will be in place to limit access to

data.

-Cloudflare module will block suspicious network

traffic.

-Web Application will require authentication.

Intended Uses/Users
Our product’s intended end-user is Cylosoft, with the

product operating on Cylosoft’s existing software

system. Our work is intended to be scalable to meet

the needs of Cylosoft as they expand their software in

the future.

Problem Statement
Cylosoft is a company that designs, codes, and hosts

websites. These websites are often probed and

tested by bots, hackers, and spammers. The web

servers at Cylosoft generate text log files as URLs are

hit, and Cloudflare acts as a web application firewall

(WAF). Cylosoft uses Cloudflare as its firewall, which

has both Cloudflare generated rules and customer-

generated rules, and there are gaps in the rules that

can be improved.

Proposed Solution

Parse through Microsoft IIS log files and insert log files

into Azure Database to then be scanned every two

minutes by multiple scanners which return high risk IP

addresses to be used with CloudFlare API to mitigate

risk of attack.

Technical Details
Web Server

The web server contains the website our project oversees

protecting. Our project should be able to work for a variety of

different web servers.

Console Application

Responsible for finding, parsing, and sending relevant

information from IIS log files to the Azure web service. This

application will make use of REST protocols for sending data.

Azure web service

Consists of a database for storing IIS log information. This will

make use of REST protocols for transferring data between the

database, the console application, and the Scanner.

Database scanner

Responsible for analyzing the relevant data from the database

and creating new Cloudflare rules based on that data.

Cloudflare WAF

The firewall which will block unwanted traffic from reaching the

web server. Rules will be updated in real time by our

application through its API.

Web application

The web application will be responsible for providing a user-

friendly interface for our client to easily view and filter the

contents of our database.

Security Concerns

There are limitations with our scanners, there are many

different types of attacks, and we have only account for some,

these scanners will need to be updated and maintained​.

Engineering Standards
-IEEE 1028-1997 Standard for Software Unit Testing ​

-IEEE 12207-2017 Software Life Cycle Process ​​

-IEEE 16326-2009 Project Management

Engineering Constraints
-Covid

-Team Size

-Legal Obligations

-Time Constraint

-Acceptance Testing

Software Modules/Technologies
-Visual Studio IDE

-C# (.NET Framework)

-Azure Database

-MYSQL

-Cloudflare WAF (API)

Testing
Console Application

-Used sample log files provided by our client.

-Used local IIS to replicate production environment.

-Initially tested on low risk/low volume server.

Web Application

-Used chrome debugging console to identify

dependency errors.

-Connected Web Application to live database.

-Ensured testing environment was identical to the

production environment.

Database Scanner

-Used Log files with known attacks provided by our

client.

-Pulled Data from existing database.

-Connected database scanner to live database to load

data from console application.

Acknowledgements
We would like to thank the Cylosoft team for giving us the

opportunity to work on such an interesting project. We would

also like to thank our faculty advisors Berk and Yong, and our

client Andrew for all of their amazing support and insights.

